Calculation form 1 for t-distribution. Dr.Funatsu, Professor of Meisei university, Tokyo.@Mail@Contents of forms@Top page
...
[Input] Degree of freedom n=
Input as a…b. If input bƒa, the value of a and b are exchanged.
E is an index of calculation errors and
0.00001…E…0.01
a= b=
E=
[Output]
Value for calculation a=
Value for calculation b=
Probability density(a)=
Probability density(b)=
Mean of t= (n†2)
Variance of t= (n†3)

Area of t…a(probability A)=
Area of aƒt…b(probability B)=
Area of bƒt(probability C)=
Total area(A+B+C)=1
Positions of a and b are fixed in the image below, irrespective of input values
in the left column.

.........................................................................To seek b for given C.

Referring values of gamma- and beta-function. n=ipossible errors in
decimals of lower positionj
@ƒ”(n/2)= , ƒ”(n/2+0.5)= , ƒ (0.5, n/2)=

When n is large, values may be shown in index style as 3.14e+20. Be careful of
last place of decimals.


Comparison of calculated values for area 0-b of the distribution. Values for E=0.001 have better
precision than those for E=0.01. Degree of freedom n=1 b=1 b=2 b=5 b=10 b=30 b=50 E=0.01 0.2492 0.3520 0.4372 0.46829 0.48939 0.49363 E=0.001 0.2499 0.3524 0.4371 0.46827 0.48939 0.49363 Degree of freedom n=5 b=1 b=2 b=3 b=4 b=5 E=0.01 0.317 0.448 0.485 0.49486 0.49795 E=0.001 0.318 0.449 0.484 0.49484 0.49794 Degree of freedom n=20 b=1 b=2 b=3 b=4 b=5 E=0.01 0.334 0.4700 0.4965 0.49965 0.49996 E=0.001 0.335 0.4703 0.4964 0.49964 0.49996