Sample expansions of 1/(1}x) To the theory To numerical studies To the calculation form for 1/(1-x) To the calculation form for 1/(1+x) For example, as p=2 and q=5, we show expressions (1) and (16) in detail.iValue of ri varies by expressions.j First degree 1/(1-x)=-0.96+0.16x+r1@@@Valid in 2x5 (1) 1/(1+x)=-0.96-0.16x+r1 Valid in -5x-2@ (16) 1/(1-x)=0.39506+0.04938x+r1@@@Valid in -5x-2 (1) 1/(1+x)=0.39506-0.04938x+r1 Valid in 2x5@@ (16) Second degree 1/(1-x)=-1.744+0.608x-0.064x2+r2@@@Valid in 2x5@@(1) 1/(1+x)=-1.744-0.608x-O.064x2+r2 Valid in -5x-2@@(16) 1/(1-x)=0.52949+0.12620x+0.01097x2+r2@@@Valid in -5x-2 (1) 1/(1+x)=0.52949-0.12620x+0.01097x2+r2 Valid in 2x5 (16) Third degree 1/(1-x)=-2.8416+1.5488x-0.3328x2+0.0256x3+r3@@@Valid in 2x5 (1) 1/(1+x)=-2.8416-1.5488x-O.3328x2-0.0256x3+r3 Valid in -5x-2 (16) 1/(1-x)=0.63405+0.21582x+0.03658x2+O.00244x3+r3@@@ Valid in -5x-2 (1) 1/(1+x)=0.63405-0.21582x+0.03658x2-0.00244x3+r3 Valid in 2x5 (16) Fourth degree 1/(1-x)=-4.37824+3.30496x-1.08544x2+0.16896x3-0.01024x4+r4@@ Valid in 2x5 (1) 1/(1+x)=-4.37824-3.30496x-1.08544x2-0.16896x3-0.01024x4+r4 Valid in -5x-2 (16) 1/(1-x)=0.71537+0.30876x+0.07641x2+O.01003x3+0.00054x4+r4@@@Valid in -5x-2 (1) 1/(1+x)=0.71537-0.30876x+0.07641x2-0.01003x3+0.00054x4+r4 Valid in 2x5 (16) Effect of p and q When we fix n and (q+p)/2, the expressions do not change for the change of p and q. (q+p)/2 locates the center of the interval (p,q). If (q+p)/2, the center of the interval changes, the expression changes. In case of 1/(1-x), when p(or q)is near to 1 and the width of the interval is small, the coefficients have a tendency to be large. If we replace x to -x in the expressions below, we get expressions for 1/(1+x), then the valid interval changes from (p,q) to (-q,-p). Sample expressions of fourth degree are follows.iCoefficients in the expressions of third degree or under will be different.) Cases where p is far from 1. 1/(1-x)=-2.51336+1.39037x-0.34462x2+0.040935x3-0.0019040x4+r4 Valid in 3x6 1/(1-x)=0.63335+0.22597x+0.044905x2+0.0046693x3+0.00019869x4+r4 Vlid in 6x-3 1/(1-x)=-0.41194+0.058707x-0.0040459x2+0.00013759x3-0.0000018593x4+r4 Valid in 10x20 1/(1-x)=0.27580+0.034405x+0.0022182x2+0.000072479x3+0.00000095367x4+r4@@ Valid in -20x-10@ Cases where p is near to 1. 1/(1-x)=59050-269000x+460000x2-350000x3+100000x4+r4 Valid in 0.8x1 1/(1-x)=-161050+571000x-760000x2+450000x3-100000x4+r4@@ Valid in 1x1.2 1/(1-x)=2-8x+32x2-48x3+32x4+r4 Valid in 0x1 1/(1-x)=-242+568x-512x2+208x3-32x4+r4 Valid in 1x2 1/(1-x)=1+x+x2+x3+x4+r4 Valid in -1x1 1/(1-x)=0.99588+0.95473x+0.79012x2+0.46091x3+0.13169x4+r4 Vakid in -2x1 1/(1-x)=-6.59375+6.06250x-2.37500x2+0.43750x3-0.031250x4+r4 Vakid in 1x5 1/(1-x)=0.86831+0.53909x+0.20988x2+0.045267x3+0.0041152x4+r4 Valid in -5x1 1/(1-x)=-0.61051+0.12154x-0.011560x2+0.000540x3-0.000010x4+r4 Valid in 1x21 1/(1-x)=0.37908+0.068618x+0.0065259x2+0.00031667x3+0.0000062092x4+r4 Valid in -21x1