Numerical studies                    To the theory  To sample expansions of 1/(1±x)
                   To the calculation form for 1/(1-x)  To the calculation form for 1/(1+x)
 As examples, we try to expand 1/(1±x) as p=2 and q=5, that is, p<x<q. We can see smaller
errors for larger n or for x around the center of the interval. Figures in ( ) of the tables 
are for p=2 or q=5. They are not valid but shown to see limits.

xSum of
series
True
value
Error(r1)
2(=p)(-0.64)(-1.00)(0.36)
2.5-0.56-0.670.11
3.0-0.48-0.500.02
3.5-0.40-0.400.00
4.0-0.32-0.330.01
4.5-0.24-0.290.05
5(=q)(-0.16)(-0.25)(0.09)
1. Expansion of 1/(1-x) First degree  From (8), a10=-2{1+(5+2)/(5+2-2)}/(5+2-2)=-0.96 , a11=4/(5+2-2)2=0.16 , Hence, 1/(1-x)=-0.96+0.16x+r1   ..........(18) See table of right side.
xSum of
series
True
value
Error(r2)
2(=p)(-0.784)(-1.0000)(0.216)
2.5-0.624-0.66670.0427
3.0-0.496-0.50000.0040
3.5-0.4000-0.40000.0000
4.0-0.336-0.3333-0.0027
4.5-0.304-0.2857-0.0183
5(=q)(-0.304)(-0.2500)(-0.0540)
Second degree  From (10), a20=-2[1+(5+2)/(5+2-2) +{(5+2)/(5+2-2)}2]/(5+2-2)=-1.744 , a21=4{1+2(5+2)/(5+2-2)}/(5+2-2)2=0.608 , a22=-8/(5+2-2)3=-0.064 Hence, 1/(1-x)=-1.744+0.608x-0.064x2+r2  ..........(19) See table of right side.
xSum of
series
True
value
Error(r3)
2(=p)(-0.8704)(-1.0000)(0.1296)
2.5-0.6496-0.66670.0171
3.0-0.4992-0.50000.0008
3.5-0.4000-0.40000.0000
4.0-0.3328-0.33330.0005
4.5-0.2784-0.28570.0073
5(=q)(-0.2176)(-0.2500)(0.0324)
Third degree  Substituting p=2 and q=5 in (12), a30=-2.8416 , a31=1.5488 , a32=-0.3328 , a33=0.0256, Hence, 1/(1-x)=-2.8416+1.5488x-0.3328x2+0.0256x3+r3....(20) See table of right side.
xSum of
series
True
value
Error(r4)
2(=p)(-0.92224)(-1.0000)(0.07776)
2.5-0.65984-0.666670.00683
3.0-0.49984-0.500000.00016
3.5-0.40000-0.400000.00000
4.0-0.33344-0.33333-0.00011
4.5-0.28864-0.28571-0.00293
5(=q)(-0.26944)(-0.25000)(-0.01944)
Fourth degree  Substituting p=2 and q=5 in (14), a40=-4.37824 , a41=3.30496 , a42=-1.08544 , a43=0.16896 , a44=-0.01024, Hence, 1/(1-x)=-4.37824+3.30496x-1.08544x2+0.16896x3 -0.01024x4+r4  ..........(21) See table of right side.
2. Expansion of 1/(1+x)
xSum of
series
True
value
Error(r1)
2(=p)(0.29630)(0.33333)(-0.03704)
2.50.271600.28571-0.01411
3.00.246910.25000-0.00309
3.50.222220.222220.00000
4.00.197530.20000-0.00247
4.50.172840.18182-0.00898
5(=q)(0.14815)(0.16667)(-0.01852)
First degree  From (17), b10=2{1+(5+2)/(5+2+2)}/(5+2+2) =0.39506 , b11=-4/(5+2+2)2=-0.04938 , Hence,  1/(1+x)=0.39506-0.04938x+r1   ..........(22) See table of right side.
xSum of
series
True
value
Error(r2)
2(=p)(0.32099)(0.33333)(-0.01234)
2.50.282580.28571-0.00314
3.00.249660.25000-0.00034
3.50.222220.222220.00000
4.00.200270.200000.00027
4.50.183810.181820.00200
5(=q)(0.17284)(0.16667)(0.00617)
Second degree  From (17), b20=2[1+(5+2)/(5+2+2) +{(5+2)/(5+2+2)}2]/(5+2+2)=0.52949 , b21=-4{1+2(5+2)/(5+2+2)}/(5+2+2)2=-0.12620 , b22=8/(5+2+2)3=0.01097 , Hence,  1/(1+x)=0.52949-0.12620x+0.01097x2+r2......(23) See table of right side.
xSum of
series
True
value
Error(r3)
2(=p)(0.32922)(0.33333)(-0.00412)
2.50.285020.28571-0.00070
3.00.249960.25000-0.00004
3.50.222220.222220.00000
4.00.199970.20000-0.00003
4.50.181370.18182-0.00044
5(=q)(0.16461)(0.16667)(-0.00206)
Third degree  Substituting p=2 and q=5 in (17), b30=0.63405 , b31=-0.21582 , b32=0.03658 , b33=-0.00244 , Hence, 1/(1+x)=0.63405-0.21582x+0.03658x2 -0.00244x3+r3 ........(24) See table of right side.
xSum of
series
True
value
Error(r4)
2(=p)(0.33196)(0.33333)(-0.00137)
2.50.285560.28571-0.00015
3.00.250000.25000-0.00000
3.50.222220.222220.00000
4.00.200000.200000.00000
4.50.181920.181820.00010
5(=q)(0.16735)(0.16667)(0.00069)
Fourth degree  Substituting p=2 and q= in (17), b40=0.71537 , b41=-0.30876 , b42=0.07641 , b43=-0.01003 , b44=0.00054 , Hence,  1/(1+x)=0.71537-0.30876x+0.07641x2-0.01003x3 +0.00054x4+r4  ..........(25) See table of right side.