[図名] 内サイクロイド2
[連立方程式] X=(A-B)*COS(T)+C*B*COS((A-B)*T/B), Y=(A-B)*SIN(T)-C*B*SIN((A-B)*T/B) ここでは A=3, B=1とし、Cを変化させます。(0<C<1)
[方程式の座標系] 直交座標系
[方程式の座標変数] X,Y
[媒介変数] T
[描画の座標系] 直交座標系
[描画の座標変数] X,Y
・暗赤 C=0.8 すなわち X=2*COS(T)+0.8*COS(2*T), Y=2*SIN(T)-0.8*SIN(2*T)
・濃青 C=0.5 すなわち X=2*COS(T)+0.5*COS(2*T), Y=2*SIN(T)-0.5*SIN(2*T)
・緑 C=0.2 すなわち X=2*COS(T)+0.2*COS(2*T), Y=2*SIN(T)-0.2*SIN(2*T)
・ X:横軸、Y:縦軸、縦横等目盛、目盛の単位1

内サイクロイドの幾何学的説明
上記の内サイクロイドは、一定円(この場合半径3)に、他の円(この場合
半径1)が内接しながら転がるときの、内接円内の定点の軌跡です。

グラフィックスの目次へ   
先頭ページへ