[図名] 螺獅線1
[方程式] X2*Y2=(1-Y)2*(4-Y2)
[方程式の座標系] 直交座標系
[方程式の座標変数] X,Y
[描画の座標系] 直交座標系
[描画の座標変数] X,Y
・ X:横軸、Y:縦軸、縦横等目盛、目盛の単位1螺獅線の幾何学的説明
定点 Aと定直線があり、Aを通る任意の直線が定直線と交わる 点を Pとし、直線 APの上に Pを端とする一定の長さの線分 PQ を2つとります。すると、Qの軌跡が螺獅線となります。 定点 Aと定直線の距離を A,線分の長さを Bとするとき、螺獅線の方程式は、 X2*Y2=(A-Y)2*(B2-Y2) となります。B>Aのとき、丸い瘤ができます。上例では A=1, B=2です。 また、媒介変数で表わすと X=A*TAN(T)+B*SIN(T), Y=B*COS(T) となります。
グラフィックスの目次へ 先頭ページへ